Collectivity in Small Systems at RHIC

Kurt Hill University of Colorado

RHIC AGS Users' Meeting
June 8 2016

Collectivity in A+A Collisions

Hydro has become the standard picture

Single model describes data from RHIC and LHC

Collectivity in Small Systems

Recent Studies at both RHIC and LHC hint at collective behavior in systems once thought too small

Collectivity in Small Systems

Recent Studies at both RHIC and LHC hint at collective behavior in systems once thought too small

New channels open to test the Hydro picture

Can small systems help us understand how initial geometry and energy deposition translate to final state particle distribution?

Can small systems help us understand how initial geometry and energy deposition translate to final state particle distribution?

Can small systems help us understand how initial geometry and energy deposition translate to final state particle distribution?

Change Geometry Change Energy

Change Geometry Change Energy

Control initial geometry of projectile

Measure system response via final state anisotropies

Change Geometry

Change Energy

Control initial geometry of projectile

Measure system response via final state anisotropies

Collision geo Model
Initial anisotropy

Initial Conditions

- Fluctuations in nucleon coordinates
- Smear energy deposition by Gaussian
- Use all participants

- Fluctuations in nucleon coordinates
- Fluctuations in color charge within nucleons
- Look at region where nucleons overlap

Geometry Engineering at RHIC

Geometry Engineering at RHIC

Quantify initial anisotropy (MC)

$$arepsilon_n = \left(\sqrt{\langle r^2 \cos(n\phi_{
m part})
angle^2 + \langle r^2 \sin(n\phi_{
m part})
angle^2}
ight)/\langle r^2
angle$$

Compare with measured anisotropy

$$v_2 = \frac{\langle \sum \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

Courtesy of Björn Schenke

Geometry Engineering at RHIC

Quantify initial anisotropy (MC)

$$arepsilon_n = \left(\sqrt{\langle r^2 \cos(n\phi_{ ext{part}})
angle^2 + \langle r^2 \sin(n\phi_{ ext{part}})
angle^2}
ight)/\langle r^2
angle$$

Compare with measured anisotropy

$$v_2 = \frac{\langle \sum \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

For Ideal hydro

PHENIX Long Range Correlations

$$S(\Delta \phi, p_T) = \frac{d(w_{\text{tower}} N_{\text{same event}}^{\text{track}(p_T)\text{-tower}})}{d\Delta \phi}$$

$$C(\Delta\phi, p_T) = \frac{S(\Delta\phi, p_T)}{M(\Delta\phi, p_T)} \frac{\int_0^{2\pi} M(\Delta\phi, p_T) d\Delta\phi}{\int_0^{2\pi} S(\Delta\phi, p_T) d\Delta\phi}$$

Mixed event

PHENIX Long Range Correlations

$$S(\Delta \phi, p_T) = \frac{d(w_{\text{tower}} N_{\text{same event}}^{\text{track}(p_T)\text{-tower}})}{d\Delta \phi}$$

$$C(\Delta\phi,p_T) = \frac{S(\Delta\phi,p_T)}{M(\Delta\phi,p_T)} \frac{\int_0^{2\pi} M(\Delta\phi,p_T) d\Delta\phi}{\int_0^{2\pi} S(\Delta\phi,p_T) d\Delta\phi}$$

 $| \Delta \eta | > 2.75$

Estimating Non-Flow

$$c_2(p_T) = c_2^{Non-Elementary} + c_2^{Elementary}$$
Flow Dijet fragmentation/resonance decays

Estimating Non-Flow

$$C_2(p_T) = C_2^{Non-Elementary} + C_2^{Elementary}$$

 $C_2(p_T) = C_2^{\text{Non-Elementary}} + C_2^{\text{p+p}_X}$ Charge at Forward η in p+p

Charge at Forward η in p+Au

Factored into measurement as systematic uncertainty only

Elliptic Flow – Event Plane Method

p_{_} [GeV/c]

Phys. Rev. Lett. 115, 142301 (2015)

$$v_2 = \frac{\langle \sum \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

Resolution $Res(\Psi)$ estimated from correlation of three independent sub-events

Elliptic Flow – Event Plane Method

Phys. Rev. Lett. 115, 142301 (2015) Phys. Rev. Lett. 114, 192301 (2015)

$$v_2 = \frac{\langle \sum \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

Resolution $Res\left(\Psi\right)$ estimated from correlation of three independent sub-events

Elliptic Flow – Event Plane Method

PHENIX Data

Phys. Rev. Lett. 115, 142301 (2015) Phys. Rev. Lett. 114, 192301 (2015) Preliminary

$$v_2 = \frac{\langle \sum \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

Resolution $Res(\Psi)$ estimated from correlation of three independent sub-events

Sonic: Viscous Hydro Model

MC Glauber initial conditions

Relativistic viscous hydrodynamics

Cooper-Frye hadron cascade

Remarkable Agreement!

Hydro with IP Glasma Initial Conditions

d+Au and ³He+Au are overpredicted p+Au is underpredicted

Hydro with IP Glasma Initial Conditions

Changing η/s makes all curves move in the same direction

AMPT: Partonic Scattering Model

Elliptic Flow Mass Ordering

As in A+A collisions, elliptic flow mass ordering is a feature of small systems

Triangular Flow 3He+Au

v₃ Measured in central 3He+Au at 200GeV

superSONIC

SONIC + preequilibrium phase

v₃ expected to be measured with run 16 d+Au 200GeV

v_n in d+Au 200GeV from STAR

In agreement with PHENIX in overlap region

Change Geometry Change Energy

- Geometry drives flow in small systems
- Anisotropy measurements in good agreement with hydro models

Change Geometry

Change Energy

- Geometry drives flow in small systems
- Lower beam energy

- Anisotropy measurements in good agreement with hydro models
- Look for response in v_n measurements

Going Down in Energy

In hydro:

Sum spacetime volume of all fluid elements hotter than the transition temp

Going Down in Energy

In hydro:

Sum spacetime volume of all fluid elements hotter than the transition temp

Going Down in Energy

In hydro:

Sum spacetime volume of all fluid elements hotter than the transition temp

Lowering collision energy lowers the contribution from the QGP phase

Hydro With **Pre-Equilibrium**

Hydro Without Pre-Equlibrium

Central trigger (0-5%) $\sim 1.3 \times 10^9$ events Min Bias trigger (0-5%) $\sim 0.8 \times 10^7$ events

Small Systems Experiments Summary

Change Geometry

Change Energy

- Geometry drives flow in small systems
- Models predict significant v₂ for all energies in beam energy scan
- Anisotropy measurements in good agreement with hydro models
- Measurements coming soon!

Thank You